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In a recent paper [6}-we showed that an unknown real-analytic conduct-
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ivity 7 may be determined from static boundary measurements. - Here we extend

this analysis by demonstrating that a similar result holds for piecewise

real-analvtic conductivities. In addition, for the special case of a lavered
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structure we—shew that a three times corntinuously differentiable conductivity
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1. 1Introduction

This paper addresses the following inverse problem: Can one determine
an unknown conductivity Yy inside a body Q byv means of static measurements
at the boundary? Since there is no dependence on time, the underlving equation
Ze(yPu) = 0 is elliptic. Our first paper [6] established the identifiability
of a real-analvtic vy ; 1in this one we demonstrate a similar result when
is piecewise real-analytic (for example, piecewise constant).

Consider a bounded domain Q € R" , n 22, and a "conductivity"

y € LD(Q) , 0 < Yo € Y(x) . For appropriate ¢ there is a unique u ¢ Hl(n)

such that
(1) Ve(y(x)Vu) = 0 in @
u=¢ on 30,

obtained for example by minimizing Dirichlet's integral. Let QY(a) be the

energy of the solution,
2
Q(#) = | v|7u|%dx .
Y Q -
If 32 1is sufficiently smooth then Green's formula gives

r u
Q (3 = | uey —ds ,
Y I3q

where "ds" denotes surface area; consequently Qy(é) depends only on the

Dirichlet-data ¢ and its associated Neumann-data, the conormal derivative

Ju . .
Y3 c Our inverse problem is to determine vy given knowledge.gg the quadratic

form QY . We shall say that y is identifiable (within a certain class)

by boundary measurements if the map vy ~ QY is injective (in this class).
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There is an equivalent formulation in terms of the map taking Dirichlet-

to Neumann-data

-y Ju
Ay ulan = Y 5olaa -

The form QY determines the map AY , by polarization. Therefore our problem

is alternately to determine y given knowledge of the Dirichlet- to Neumann-data

map AY .
If vy and & are known at 39 , then there is another formulation

v
. . 1/2
involving - 4 + q . Indeed, v =y "“u solves

~ Av+qv =20 in Q

v = Yl/2¢ on 30 ,

with

2
119 1
2) q= - Z.i_xl_.+.5 %}

whenever u solves (1), assuming sufficient regularity of y . The Dirichlet~

to Neumann-data map for q is

> v
Ryt vle > Folan
1f the boundary values of y and %% are known then information about Rq

is equivalent to that about AY ; hence our problem is also to find the

unknown potential q(x) given knowledge of the map Eq .

Some special cases of the inverse problem can be treated by separation

of variables. R. E. Langer considered c lavered half-space ia 1933 [§]., He

reconstructed all the derivatives of v at the boundary from knowledge of A-l(v))
g y ;

for just one particular flux Yy Moreover his choice of ‘n is one which naturallve
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shows up in geophysical applications. Another example is that of a lavered
rectangle, analyzed by Cannon, Douglas and Jones in 1963 [2].

The general case, without restrictions on the form of € and v , has
only been considered more recently; to the best of our knowlege it was first
raised by A. P. Calderon [l]. He proved that the map y - Q, 1is Frechet
differentiable for vy ¢ L , and that the differential at Yy = constant is
injective. However its range is not closed, so the implicit function theorem
does not apply, and one cannot conclude the identifiability of vy from
this analysis.

We took a different approach in [6], using the variational principle
and special Dirichlet data with localized, highly oscillatory behavior. We
proved that the quadratic form QY (or the map AY) determines all the
derivatives of y at the boundary. Identifiability in the class of real-
analytic ¥ follows as an immediate corollary. A more extensive review of
the literature is found in {7]. It seems worth noting that the method of {6]
can also be used for - A + q , even when q does not have the form (2). If
q and 23Q are c” then the Dirichlet-to Neumann-data map Rq or the
corresponding energy form q -~ f([Vv[2+q|v[2)d5 (provided each is well-derined)
determines q and all its derivatives at the boundary.

Unfortunately, the results just summarized are far from satisfactory.
The original goal was to reconstruct y everywhere, while these results
give only its derivatives at the boundary. It remains unknown, for example,
whether a C" conductivity is determined in the interior by these boundary

measurements,

The present paper represents some modest progress toward the interior

reconstruction problem. Our main result is one of identifiability in the class ~

L

of piecewise real-analvtic conductivities. The proof, presented only in dimension

2 b € e 0
b W i DD Y

e

7
L)

two for ease of exposition, uses the ideas of [6] together with the Runge T
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Approximation Property for solutions of V-(y7u) = 0 . 1Its concept is
I sketched in section 2, and the details are developed in sections 3-5. Our
,i second result, presented in section 6, is the identifiability of a lavered
:¥ conductivity which is merely three times continuouslv differentiable. For
II ) simplicity we treat only the case of a finite-width strip in ‘R; . The proof
i uses separation of variables and recent progress in one-dimensional inverse
’ spectral theory. Our third topic, presented in section 7, is the convergence
- of a reconstruction algorithm for real-analytic y . This algorithm restricts its
» attention to approximations of y within a suitable compact set and the
3: proof of convergence depends heavily on the identifiability demonstrated in

= [6]. The proof gives no information on the rate of convergence or the

. efficiency of the algorithm;these remain important directions for further study.
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§2. Concept of the piecewise analvtic case

real-analytic conductivity in [6]. Given a smoothly bounded domain I , consider

two coefficiznts /1 and ¢, , and let Uy and u, be the corresponding solutions

13
i
3
b
»
We begin by reviewing how boundary measurements were shown to determinc a
of (1):
>

(3) V-(Yivui) =0 $ , i=1,2,

, “1lan=

h If Y1 # Yy then their Tavlor expansions differ; relabeling if necessary,

one easily concludes that

v (X)=v, (%) 2 Co(pz , o(x) = dist (x,3Q)

for some £ >0, ina { - neighborhood D of some %, € 32 . By choosing

Dirichlet data ¢ that oscillate rapidly near X, , one can arrange that the
energy of uy be concentrated in D , and indeed that
) j (a2 < EJ o 9w, | 2ax

Q\D D

with € > 0 as small as desired (see Lemma 3). Then

2 2 A
(5) QY1(¢) = JQ Y1|Vu1| dx 2 JD Yl[Vul[ dx S

1N\’

2 SRR

J Y2|Vu1|2d§ +C J oZ Vu, | "dx ]

D D RN
f 2

> | ¥y | Vuy | Tdx

(6)
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using (4) and the variational principle for (3) in the last two steps. Therefore




for this choice of ¢ the boundary measurements are different.
Our method for the piecewise analvtic case is a direct extension of
this. Consider the simple example of the ball 2 = {|x|<1} with an unknown

concentric inclusion:

, |
vi () |xf<r;

Yi(g) = i=1,2.
13 ]
Yi(ﬁ) l§_|>ri

Here yi and Y; are real-analytic functions of x . If Yy and vy,

h: e the same boundary measurements then the argument sketched above shows

that YK = YZ in x| > max(rl,rz) . A new idea is required, however, to

establish that Y, = ¥, also for !EJ < max(rl,r ) .

2

Assuming that r, < r, , what we would really like to do is to repeat

1= "2

the estimation
J |v lzd r {7 |2d
Y u X > Yo VU X
2 1 1 JQ 2 1

with @ replaced by the subdomain Q' = {L§[<r2} . At first glance this
seems impossible, since the elliptic equation ve(yVu) = 0 will smooth out anv
oscillations of the Dirichlet data prescribed on the outer boundary. But in

fact it is possible, since this equation has the Runge Approximation Propertv:

if Ve(yVu) = 0 on a subdomain w €  , then u can be approximated on
compact subsets of w by solutions of the same equation in the full domain

5 (see Lemma 2).

n
al
9

Therefore to show that Y] = Y, across ix!

-

, we once again assume

the contrary: if not, then

@, @ 2k @I, ot =, - ],




for some ¢ 2 0 , in a neighborhood D' relative to &' = {lijsrz} of
some X, € 3Q'" . We suppose for simplicity that Y is the larger in this neighbor-

hond. The comstruction of [6] together with the Runge property leads to a function

uy with V'(‘y'l'.’ul) = (0 on all of 2 and
1 2
f |7, [7dx < < jf (p')ZIVul!zdz
Q'\D' D'

(see Lemma 4). The behaviour of Uy off Q' 1is essentially unknown, but

that is acceptable because Y=Y, there. Estimates parallel to (5)-(6)

using ¢ = u show that QY (¢) > QY (¢) when € 1is small enough.

llaﬂ

1 2
Therefore if Yy and Yy had the same boundary data they must have been
equal in a neighborhood of |§! =r, .
If r, =1, this argument establishes Y] = Yy - If r; < T, then

we've shown that YL =Y in {|5[>rl} ; the same argument can be repeated

at |x| = r, to establish Y] = v, in {|§|<rl}, and it follows that :1;

1
Yy T Yy o Though the geometrical and analytical technicalities are substancial, o

this procedure of "marching inward from the boundary'" will work in essentially

the same way for the general piecewise analytic case.

A b b

T
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3. Preliminaries

We begin with definitions and conventions on the use of the term

"piecewise analytic". From this point on we drop the prefix real and use the term

St at e T

. . m .
analvtic as a synonyvm for real-analvtic. Let @ he an open set in RO, -~

m=1 or 2 . We recall that a function Yy : w *R 1is analvtic in « if it -

®
is infinitely often differentiable and for everv compact subset K C . there
exists a constant r. for which

1 af e e
sup rl(( iID Y| < =
the supremum being over all points x € K and all m~tuples a of nonnegative
integers. e
We shall say that a c” function Y 1is analytic on 0 if it has
et e, Sttt

an extension which is analytic in a neighborhood of @ . A mapping

L4

g : [0,1] *“Rz is called an analvtic curve if each of its coordinates is

analytic on [0,1} and Dg(s) # 0 for all s € [0,1].

5
A bounded, open set » CR" 1is called a piecewise analvtic domain if

(1) w 1is connected,
(ii) its boundary 3w is a union of
finitely many (images of) analytic ‘
curves, .
(1ii) w lies locally on one side of 3w . }_i
Notice that the boundary of a piecewise analvtic demain can have cusps. °
Following [3] we say that a bounded, open set o C RP is an analvtic _;‘i
curvilinear polvegon 1f it is connected, and if for each x € 3. there exists ;5
. .

a neighborhood B of x (relative to Rz) and a map ¢ such that




\O

(i) ¢ maps B injectively onto a neighborhood
2
of the origin in R~

. . -1 . .
(ii) ¢ and ¢ have analytic coordinate functions

(iii) ®(wNB) 1is either ({x : x2>0} 0 9(B) , ix : X 7 0 and

x,20- 7 2¢B) or x : ¥, 70 or x,>0) fi 9(B) .
Analvtic curvilinear polygons are special cases of piecewise analvtic demains

without cusps and "corners'of angle = .

A family {wj}?_l is a (disjoint) piecewise analytic cover of a closed

set if

1) each mj is a piecewise analytic domain,

(ii) wc U

=1

(iii) w, N mj =¢ for 1i# 3 .

A function Yy : w R is piecewise analytic on w (relative to the cover

A

{wj}) if it is analvtic on each Bj , 1 j £ N . Notice that no continuity
is assumed across the interfaces.

In proving identifiability we shall consider two conductivities g and
Y, corresponding to different piecewise analytic covers. It is important to

note that they are both piecewise analytic relative to a common refinement of

the two covers:

Lemma 1. If B and v, are piecewise analvtic functions on w , then
. . . N
there exists a piecewise analvtic cover {mj'j—l such that both Yy and vy,

are analytic on each i o 1 <3 gN.

b
J

i =1,2, For any pair (j,k) the boundarv of the intersection

N,
i , . . . . .
Proof: Let [ =1 be a cover relative to which Yi is piecewise analvtic, -
—————— J 3 - .

W .
.a)j qu

PR o T Lt LT g e e
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consists of finitely many (images of) amalytic curves. Of course w;l) N wéz)

mav not be connected; also, as shown in figure 1, the boundary might intersect

1) 4. ()
"j ﬂ_\‘

e .
u§l) = {xfR7: 1/2<.x;<1}
. (2)_ : 2 | i 700
s xR7: 1 x=(0,1/4) <3/4:;

Fig. 1

itself at isolated points. Nevertheless, by considering the connected components
and “cutting out" a neighborheced of any point of self-irtersection and dividing

this neighborhood in separate pieces. we can obtain

—ee M —_—
RO
] kg f
* C e . . . . - (L (2)
where the w, are disjoint, piecewise analytic subdomains of w, n wy .
The collection of all w* (corresponding to all pairs (j,k)) constitutes

2

a cover of Q relative to which both Y, and y, are piecewise analytic.
—
—
Remark 1,

In the preceding proof we used the fact that two analytic curves either
intersect in at most finitely many points or the intersection is itself an analvtic
curve. This was used to conclude that the intersection of two piecewise analytic
domains has a boundary which consists of finitelv many analytic curves. A

, ; k .. . .
similar fact does not hold for C -curves, and this is whv we work with piecewise
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analvtic partions of i::

For an arbitrary open set w EJRF , m =12 we use the terminology
Hk(w) to denote the set of functions that together with all their derivatives
of order < k are square integrable in w . Spaces with noninteger indices
are defined by complex interpeclation. If g is an analytic curve with
{g(s) : s € (0,1)} =T , then Ht(F) denotes those functions u for which
ueg £ Ht((O,l)) . The norm on Ht(w) is denoted f-ft - and similarly for
the space Ht(F)

Let Q be an analytic curvilinear polygon. Ve recall that Xy < 3.4
is a corner if near it { 1is analytically isomorphic to either {§ : xl>0 and
x2>0} or {x: x1>0 or x2>0} . Let x(s), s € [-5,8], 6>0,be a
parametrization of 32 near X = x(0) according to arclength (i.e. the arclength

from x(s) to Xy is ls| , and x(s) and x(-s) 1lie on opposite sides of Xn) -

If ¢ is a function on 32 , we set

On

¢
“ = !

I, () = | lex(s))=0(x(-s))]%s " ds .
% Jo

Ler x, , 1 < i ¢ M, be all the corners of 3.

S < , and let o= g.(s) s 7 (0,

where 8 > 1l ¢ 1 ¢ M, are the analytic boundary curves connecting these corners.

We define
ﬁl/z(an) = {¢ : ¢|r € Hl/z(ri) , 1l ¢ci¢M and
i
Ix,(“”“"’ 1 ¢i gy,
—1
witl, aorm
1ol - i [” ',2 + 1 ( 1/2
i/ = {Z iy L D .
H i=1 E’ri =i

There is a continuous, surjective trace operator from Hl(Q) to ﬁl/z(an) [31:

{ 20 ;}4;"

o]

‘
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the statement "u = ¢ on " should always be interpreted in the sense of this trace.

For any y € L with 0 < 1, £ Y(x) we denote by LY the correspond-

ing operator

Lyu = Ve(yVu)

R

The equation

, u=149% on an

~1/2
has a (unique) solution u € Hl(Q) exactly if ¢ € Hl/“

- 9
Hl/d.

(3) ; the energy

IQ Yqulzq§ is a continuous quadratic form on (30) . Whenever u ¢ Hl(ﬂ)

and Lyu € LZ(Q) , the conormal derivative

f .
PR DA Y ¥

v 3 e #2(a)1*  (the dual of R/2)
=
L
is defined by B
f r =
3 R
J Y ’3'%"‘; ds =} YVue<lv di"'[ L uev dx , -
a0 0 g Y

Q -
) Ll
'

where v € Hl(ﬁ) is any function satisfying

v = ‘9” on 3 N ”v:Il o) < C‘w” l/’? . -~
93¢ ﬁ « )

A . | Ju

The Dirichlet-to-Neumann operator PUlgas > Y 5l maps H (32) to

~1/2 .
- {H / (BQ)]* , and its image is the subspace annihilated bv the constant functions. -
We turn next to the Runge Approximation Property. Let w be a subdomain
of @ and consider a solution of qu = 0 in w . It is generallyv not

possible to extend u to a solution of Lyu = 0 in the full domain & ; that -

would correspond to solving the Cauchy problem for this elliptic equation. It

-

T

*.'_.'-‘.'.'-‘.".".‘.' T et et o \‘.

N A A
-
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is possible, however, to find an "approximate extension" in a certain sense.

This follows from results of Lax [9] and Malgrange [11]; we give a complete

’
proof for the reader's convenience.
X Lemma 2. (The Runge Approximation Property) Let w be a cm domain
h contained in the analytic curvilinear polvgon 2. ' t
and such that each connected component of {\w has a boundary curve in common
{ with 3¢ . Let O < Yo € yY(x) be piecewise analytic on { and assume that
- <
u € Hl (w) satisfies )
Lu=0 in w.
Y .
LI
Given any compact subset K < w and any € > O there exists U ¢ Hl(Q) such |
that o
.-l: E
LYU =0 in 2, and
-
f 2 :‘.;'.‘
J [ (U-u)|“dx < € . AN
K
2 "
Proof: It will suffice to show that Iw |U-u|“dx can be made as small as 1
desired, since
[ lV(U-u)Izdi < C J lU~u|2d§ T
K w T
=
N
as a consequence of the identity Ly(U-u) = 0 in w . So we must show that -’:_:73
H= {u: u-UIw,UGHl(Q),LYU-O in Q) :
is dense in
2 o
{u : u€L() , LYu =0 in w} -

D T S S
S o S S P LR T et et et T 2t et et et at et rae R A R A SN AT SR I W AL B P I e TLA T A . CLt e
DG AL P S e - _.._-.:.....-.‘..__-‘.\;'_-. L T PRI S S T e A R A A . - st Y

. . L T P S P
- . - BRI PR S T R O . .
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. 2
in the rorm of L (w) .
If not then there must be some u* € Lz(w)\{O} satisfying

Lu*=0 in w

Y
(7)

[ %

J uvdx =0 forall v €H .

w
We shall derive a contradiction from this. Let ¢ € Hl(Q) solve
(8) Lyd>=U* in Q, ¢=0 on 3 ,
where U¥ = u* in w, U*=0 in Qw . By (7)

-

0= J u'V dx = L ¢-V dx
w Q Y
[
= J Y %%-V ds
aq
1 . . 3P

for any V € H () with Lyv =0 in Q; therefore ¥y 3 0 on 3Q
We recall from (8) that ¢ also vanishes at 930 . Since y is piecewise analvtic

on &, U =0 in D , and each component of (\w has a boundary curve in

common with 23R , it follows by repeated application of Holmgren's Uniqueness

» PR
AR .
PRSI U Y W P N

Theorem (see e.g. [4]) that !

$ =0 in Ovw .

S .
‘e ', “e s e . N
PrADGT TR SR |

Therefore ¢ = y %% = 0 on 3w , and as a consequence ]

f f
[ lu*|2d§ = J L ®'u*d§ =0 .
‘u w Y

. . *
This contradicts the hypothesis that u  was nonzero, and the proof is complecte.

.. '_.-

-..'4.‘.
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Remark 2: It is not essential that w be smoothly bounded or that Q be an
analytic curvilinear polygon. The hypothesis that <y be piecewise analytic can
also be relaxed, by using Aronszajn's unique continuation theorem instead of
Holmgren's. The version stated here, however, is exactly what will be needed

in the proof of Lemma 4.
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4, Energv estimates

The following is a slight reformulation of a result in [6].

Lemma 3. Let w be a bounded C domain, Xy 2 peint on 3w , and D a

neighborhood of X, relative to w . Assume that vy € Lm(u) , 0 < Yo s y(x),

and that 1y € Cm(D). Given ¢ > 0 and € > 0 there exists u ¢ Hl(w)

such that

i L =0 in
(i) U w

f
(ii) }Vulzdi < EJ pz!Vulzdi
D

Jw\D
with o(x) = dist(x,d3w) .

Proof: For any fixed integer M 2 0 , Lemma 1 of [6} constructs a sequence

{¢N}N=l € C (3w) such that
I | t

(93) ”¢N'[1 b3 CCN ’ tz - M ’

=+t,0w

2

b e ! =
(9b) MN‘_l_ . 1
2)

(9¢) supp o ¥ {50} as N -+ =
We review the construction when 50 is the origin and 3w = {5 : xz = 0} (to

o
which the general case is easily reduced). Let v be a C function on R ,

not identically zero, with

supp ¥ < ["111} ’

+1 K
J s ¥(s)ds = 0 for integers k , 0 ¢ k £ M -1,
-1




N has

If wN(xl) = w(le) , one easily verifies that @N = N

. properties (Ya-c).

Now consider the solution uy of

LyuN =0 in w , uy = ¢N on dw .

Lemma 2 of [6] shows that

= -M
f lugly oo € €N

- while by Lemma 3 of (6]

ollou |Zax s ¢, N Lo,
N' "= § s
D
for any § > 0 . A combination of these gives
- f
(10) J |Vu\1|2dx <C N(2+6)8 oM J ozl\m |2dx .
I - 6 N —
w\D D

By choosing M > £ and 0 < § < ZTM -2 we obtain (2+48)€-2M < 0 , and hence

C N(2+<S)8-2M < e

o (11) s

for sufficiently large N . The corresponding Uy satisfies (i) by

0
s e e e e

s P .
o Y0 LT St e B
Ladnk el a2

ﬂ} definition and satisfies (ii) as a consequence of (10) and (11), using the

‘ P
. -t e e
tata'a s a’ah nd b

fact that ID QZIVuledi $ 0.
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The next lemma combines the result in Lemma 3 with the Runge Approxima~
tion Property to obtain a similar energy estimate for subdomains and with
functions that are "y-harmonic" in the larger domain. For our later applica-
tion of this result it is essential that the subdomain be onlv piecewise
"smooth". If w is an analytic curvilinear polygon then we shall call
X, € dw a regular boundary point (relative to y ) if there exists a neighbor-~
in 'RZ

hood B of and a map ¢ such that

X

(1) ¢ maps B injectively onto a neighborhood
of the origin in ]R2 ’

(ii) both maps ¢ and 0-1 have analytic coordinate
functions,

(ii1) ¢(BNw) 1is given by {x : x2>0} N &(B) and

y 1is analytic on Blw .

~

Lemma 4. Llet w , 0O be two analvtic curvilinear polygons with w 2 &.

Let « be a piecewise analvtic function on . with 0',05:(33 Assume tha{
is regular relative to Yy and that X, lies in the unbounded component of

> -
R \w. Let D be a neighborhood of 50 relative to w . Given £ 2 0 and

€ > 0 there exists U € Hl(Q) such that

(1) LYU =0 in 2
v ) !
(i) : ITU]%dx < ¢ ! oe;vyr2d§ s
j»\D ‘D
where p(x) = dist(x,3w)

s
b
3

o
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Proof:
We may without loss of generality assume that w € Q@ and that Q is
simply connected; 1if not we merely enlarge § and extend y by 1 on this new

piece of Q . Let w' S Q be a C” domain so that

(i) w' 1is simply connected and contains w ,

(ii) the boundary of ' coincides with the

boundary of w in a neighborhood of X »

(iii) w\D € w' .

(See Fig. 2.)

p

Fig. 2 e

Choosing a neighborhood D' €D of 50 relative to :F., we apply Te et

Lemma 3 to construct u £ Hl(w') satisfying -




T

T —w

(12) J IVu|2d5 <6 f (D')Zlvulzdx ,
w'\D' D! -

where p'(x) = dist(x,3w') and § > 0 is arbitrary. If D' is small

enough we have
p'(x) = dist (x,3w') = dist(x,3uw) = p(x)

for all x € D' , and then (12) implies
13) J IVu|2d§ <§ J pe|Vulzd§ .
w\D D

Since the inequality in (13) is strict, there is a compact subset KD ¢ interior (D)

for which

(14) J (vu]2dx < s J ot |vul?dx .
w\D

Let K= 02D U KD . Since it is a compact subset of w' , Lemma 2 applies to

give a function U ¢ Hl(Q) satisfying LYU =0 in g and

[ !V(U—u)lzdl < 6 J pg‘Vu12¢5 .

fwsur, S

Assuming for simplicity that p < 1 in KD , we conclude that

[ 2 [ 2 oirouy 12 2,2
| T(U-u) | "dx + . ® j7(C=u)|"dx < § 07| 7u|"dx .
Jw\D KD KD

BRI
. . . 1 2 i 12 1 2 TN
It follows using the inequality Ela] ¢ ,a-b'" + |b] that 3
oY
=)
1 2., 2 ( ¢ 2 ) 1
(13) 5 - 3) o~ {Vu{ dx < J o [oUl%dx .1




and

w-ffv v

(16)

N

DCIVulzdgg-i-J IVu]zdz .
w\D

J lVUlsz < § J
w\D

%

-i Inequalities (14), (15) and (16) combine to give

f
[ joujZax < 48 | ofimulax
- J

J\D KD

88
8

e, .2
<15 o lvu|“dx

JKD

£,
P

2
< J VU "dx .
1-28 |,

We get the desired inequality by choosing ¢ so that 8§/(1-28) = ¢ .

(]

4
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5. Identifiability of piecewise analytic coefficients
Let 2 be an analytic curvilinear polygon. Our goal is to show that o3
two piecewise analytic conductivities Y1 and v, that produce the same j
2 -4
) ._'.'t'i
boundary measurements are necessarily equal. It is assumed that Y0 Y €L (D) A
- S
.~'...|
with 0 < Ty § Yi(E) (i=1,2) . "Producing the same boundarv measurements" means L
that the maps
~1/2 ~1/2
A 200 ~ w261
A\ :
i
defined by
Bui !
AYi¢ =5 35 where LYiui =0 , uil«ﬁ = ¢

are the same for i = 1,2. Equivalently, it means that the quadratic forms

o, @) = | vyloa e

Yl Q el
are the same.

Theorem 1. Let vy, , 1=1,2, be piecewise analytic functions on & with

— 1

a positive lower bound. If

QY (0) = qQ_ ()

Cs1/2
for all : < H (32) , then

Proof: We shall assume that 18 and . v, are piecewise analvtic relative

. N
to the same covering {(w,}

375=1 i by Lemma 1 this represents no loss of generalitv.

R S R el -
fe Tt L PO e S SR S ST Y -
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Seeking a contradiction, we suppose that Yl # YZ , and we order the cover so

-0, SN

that {wj}§=l are exactly the elements where Yy # Y, .
i For any analytic curvilinear polygon Q', the outer boundarv is that
s; part of 23Q' which lies in the unbounded component of RZ\Q' . We claim that
; there is an analytic curvilinear polygon Q' € 2 with the following properties:
(17a) ' contains all wj s l<jgK
’ (17b) The outer boundary of &' has an analytic
;;. curve in common with amj for some j ,
l1<j<K..
‘ Indeed, if awj has a curve in common with the outer boundary of & for
some j , 1 < j g K, then it suffices to take Q' = & . Otherwise we choose
i%} x' € 3¢( S w,) and x" on the outer boundary of Q such that x' and x"
~ are coni:ited by a piecewise analytic (e.g. piecewise linear) curve lying :
G%_ entirely within Q\iEl ;; , except for the endpoints. KSP may also assume that E
:}: 3( U w,) is an anilytic curve near X' , and that J w, lies locally on :x&
o j=1 K - j=1 3 —
one side of 3( J &.). By excising from f a tube along the curve connecting s
" j=1 .

x' and x" (with, say, piecewise linear boundaries) we obtain an analytic

curvilinear polygon Q' with the desired properties. (See Fig. 3). i

outer boundary of 2
Shaded area marks

"tube" to be cut from .

R e A R
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« ol e
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i
For such Q', let w 1 £3 2K, be a piecewise analvtic domain sharing
an analytic curve [ with the outer boundarv of ' . Since Yy and Y, are -
>
different on wj , their Tayvlor expansions must differ along T . Therefore B

there is a point Xy in the interior of [ and an integer ¢ > 0 such that

lYl(gc_)—Yz(gc_)l 2 c [dist(z,‘)Q')]Z , ¢ >0,

in an ' - neighborhood D of Xy . Note that the boundary point %y is
t regular relative to Yy o0 i =1,2, and lies in the unbounded component of ’ *
. 2

R\Z .

Writing p(x) = dist(x,3R') , and relabeling if necessary, we have that

(18) @ -1, 2co’® i D,
Lemma 4 with w = Q' and vy = Y, yields a function U € Hl(Q) such that :—;Q
(19a) L U=0 in ©
Y]_ ‘.:.-_.
i_vm-
(19%) J IVU|2Q§ < e [ p£1VU[2d§ , L
Q'\D D
where € > 0 1is a small parameter to be chosen later. Setting -;f
’
_ ~1/2
b-ulaQ € H' 70 ,
we have ]
2 ' 2 o
(20) Q (W) = v, |9U] “ax
Y -1 = .
1 A
’
[ Y
= .({ +| +( Jy ;VU[ dx .
\J;\n.' Janp ip/ ? -
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Since

Y=Y, outside Q' the first integral equals

[ Y IVU|2d§ ;
JQ\Qv

the third integral can be bounded from below using (18),

;
J YIIVUlzdg_c_ 2 J y2|VU|2d§+ c J p£[7Ui2d§ .
D D D

Substitution into (20) yields, after deletion of the second integral,

Q. W
51 Jsz\sz'

W

5
YZIVUIZd_>_c_+ J yzlvul“dgg +c j oglvulzdi

D D

(21) [ Y2IVU!2d5+ c J pelVUlzdﬁ - [ YZIVUlzdg .
Ia Jq"\p

D

Applying (19b),

J Yq[VU|2d§ g (sup v,) J IVU‘Zdi
D~ Q"\ D

< eesup v, J oglVUlzd§ .
D
If € < c/sup Y, (c>0 is the constant in (21)) then it follows that
e Bo ! T 2
(22) Q. (v) > J v, |vU|%dx .
"1 a2

3ut

— ROl i At A it At S S d N Aot A SO A IR U A A
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so (22) implies that

QY ) > QY ) .

1 2

This contradicts the assumption that Yy and Y,
measurements., Therefore there can be no element

Yy # Y, » and the proof is complete.

w,

give the same boundarv

of the cover on which
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6. Lavered structure :
In the class of L°° (or even Cw) coefficients vy , identifiability by ; g
)
means of boundary measurements remains an open problem. It is natural to .1
expect, however, that the layvered case - which is essentially one dimensional - }Z{ﬂ
should be easier. In fact, in this case the Dirichlet- to Neumann-data map _-:i
]
determines spectral data for a certain potential, by means of analytic continua- ]
tion in Fourier space. One dimensional inverse spectral theory is rather well )
understood, and it will allow us to recover a conductivity Yy which is merely o
)
three times differentiable. We wish to chank D. Stickler for suggesting the
use of analytic continuacion to pass from boundary measurements to spectral data.
Throughout this section 2 will be the infinite strip {x : -, <, .
)
O'x7<l} E_Rz and y = y(xz) will be in Lm((O,l)) with a positive lower
. 1/2 2 . 1
bound. For any pair (¢,v) € [H R)] there is a unique u € H (2) such that
—-—d
R . = i = =y
(23) v (Y(XZ)VU) 0 in @, ulx =0 ® ulx =1 Y L--‘l
2 2 o
e d
sl
The associated Dirichlet- to Neumann-data map is R
e d
.
Ju du -1/2 2
AoCeyy) = =y ol as Yol o] €THTTT@®IT
Y | 3x2 Xy 0 ax2 X, 1
. 3 \
We begin by observing that AY determines y and sﬁL at 230 even '
2 .
2 .
when vy is merely C° . N
2 .;:
Lemma 5: If and vy are C on . and A = A then their values ’
—_— = 1 — 2 — - — Y, \
and first derivatives agree at 30 . e
S
Proof: We shall check that the argument of [6] applies. First of all, the {;f:
2 MY
regularity estimate (7) of that paper holds for k = 2,3 when y is C° . y
Therefore formula (14) remains valid for M = 2 , and the proof of Lemma 3 works ;:-;

.'- . .".—..‘ ...!" ) .c . ‘;'- .,‘ 4 .“ .‘.‘-l-.." -« '-‘
'a‘:\,:':;ﬁ,'-- PP, VAT
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with t =3 in (23). If ¢ £ 1 in (26) then the argument on pp. 296-7 applies

kl using M = 2 |, and this yields the desired conclusion.

> =

b Remark 3: This proof does not use the layered structure, but it does use that

L Rz . For & ¢ Rp the same argument requires vy € Cr y T > % . Taking

into account the layered structure it is possible to reach the conclusion
that LT, from only knowing that A (4,y) = oy ($,¥) for two sets

2 Y
1 2
of Dirichlet-data (¢,V) (see Remark 5).

-

- A1
Our next task is to separate variables. We shall write v1 =y (5,x2)

for the Fourier transform of a function v(x ) with ‘respect to its first

1’%2

argument. (If v only depends on x then we write v(£) ; no transforms will

1
ever be taken with respect to xz.) From (23), the solution of LYU =0 with
Dirichlet-data (¢,y) satisfies
d d -1 2 ~1
o 3/ . . — z - =
(24) dx2(Y(xz) dx2 u (;,xz)) £ y(xz)u (E,xz) 0, 0« x, < 1
Al - ~1 A
u (£,0) = ¢(g) , u (£,1) = Y(&)

for a.e. & €R .

The ODE (24) has its own boundary data map AY £ for each fixed £ € R,

9 9
It takes R™ to R™ , mapping (a,8) to

(25) A, g(a,8) = -yv' (0 ,yv' (1)) ,

where v € Hl((o,l)) solves fjf;
2 : . -

(26) (vww")' - £%°yv =0 in (0,1) , v(0) = a2, v(1) = 3, p"ﬂ

N OO
g

et
Lot
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The two-dimensional boundary data map /\Y determines this AY . for
[ ]

every £ :

Lemma 6: If Yy and Yoy are L” with a positive lower bound and AY = l\Y
l 2

th A = f h € .
en Yl’E AYZ’E or eac £ ¢€R

Proof: Choose Dirichlet-data ¢ and ¢ such that $ and ¢ , when restricted

to some interval (a,b) , vanish at most on a set of measure zero. From the

hypothesis that

A ,O = A ,0 A 0, = A ’l
Yl(¢ ) Y2(45 ) and Y1( ¥) Y7(0 v)

<

it follows easily that

A A for a.e, £ € (a,b) .

Yl.C YZ,E

Since AY £ is real-analytic as a function of £ , the same identity must
’

hold for all £ ¢ R .

[

In order to apply inverse spectral theory, we must transform the ODE

(26) to a more convenient form. If v solves (26) then w = Y%v solves :;;

"]

s " -2 . L ) 5 -

27) -w'+qwtiw = 0 in (0,1) , w(0)=v*0)a , w(l)=y°(1)8 , -4

-

with T

. ]

1, 22,2, 1, NS

(28) qa=-70" "+ "y . e

:;q

We note that T

: Wy T =

- - .-'._.q

-:‘ o e e e e P N SR .__.-._--\-;__.'...:: _-.\::._-':..:'_._‘
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The Dirichlet-to-Neumann map for (27) is

Kq,ﬁ 2 (w(0),w(l)) + (=" (0),w'(1)) ;

clearly it is determined by I\Y £ and the values of y and y' at O
’
and 1.
Inverse spectral theory addresses the problem of determining the

potential q(x) given knowledge about the eigenfunctions and eigenvalues of

2 2
-d"/dx” + q . The result we shall use is this one, proved in [12]:

Lemma 7. Given two potentials qj € Cl([O,l}) , 1 =1,2, consider the operators

2

e
- + q,
de i

with homogeneous Neumann boundary conditions. Let A;l) and ¢;1) be the

associated eigenvalues and eigenfunctions, with the normalization ¢;1)(0) =1

V1 @
m m

1f and ¢;1)(1) = ¢;2)(1) for each m then q; =gq,.

It remains to relate the boundary data maps and the spectral data for

Aq,g

q . To this end we consider yet another map M , taking Cauchy data at O

q,§
to Cauchy data at 1 for the ODE (27). Explicitly,

M _(a,8) = (w(l),w'(1l)) where
q,¢&

-w"+qw+5%u= 0 in (0,1) , w(0) =qa, w() =35

It is easy to check that

. if and only if A = A AN

M =M
q195 q23§ QI,E Q2’E 9

for any qi of the form (28) and any § € R (that 9y has the form (28) is

LR S S T R P ITC IR S SN e
R CI A LN ST A o “

A .
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ceowav teoguarantee that 0 s well-detinedd.  For the purpose of identifving v the
it -
use of M is thus equivalent to that of A . An important difference

q,§ q,5

is that M . 1is well-defined for complex arguments £ (and arbitrary gq € L™y,

e
)

indeed it extends to a holomorphic function in the entire complex plane. The

values of M - for complex £ are therefore determined by those for real

o

S by analytic continuation. It is easy to show that Mq . (with complex § )
5

’

determines the spectral data of q

Lemma 8: Let q, , i=1,2, be two potentials in Cl([O,l]). If M =M
i _— —_ - ql,i qzvt’

for all complex ¢ , then 9 = q,

Proof: Assume that k(l) and @(l) is an eigenvalue and the corresponding

2 .o
eigenvector for the operator ~d /dx2 + q with Neumann boundary conditions,

(1) ¢(1) _ A(l)¢(l)

-1+ q =0 in (0,1)

o0 = eM 1y =0,

As in Lemma 7, we may take the normalization

¢(l)(0) =1.

2 L

Choosing n € € so that n~ = -2 , and noting that

M 1,0) = M 1,0) ,
n’q1< ) ”’q2< )

we see that the solution of ot
—w"+q2w-k(1)w =0 , w@)=1 , w'() =20 1:\;
'@

additionallv satisfies

.
. . . . .' s
e e PR
L . % . .
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w) = sy L, W =0
(1) . 2,,.2 ,
Therefore A is also an eigenvalue of =-d"/dx™ + q2 , W 1is the correspond-
ing eigenvector, and its Cauchy data agrees with that of ¢(l) at both end-

points. A similar result holds by symmetry for any eigenvalue and the

corresponding eigenvector for q, . From Lemma 7 we now conclude that 9, = 9

We obtain the identifiability of a C3 , layered conductivity by assembl-

ing these results.

Theorem 2: Let {2 be the strip {x : —w<x1<w, O<x2<l} . If yl(xz) and
Y,(x,) are two layered conductivities of class C3([0,1]) , and if AY = AY
2 72 1 2

(or equivalently if Q  =Q ) , then vy, = v,
- - v Y, — 1 2

Proof: Let

= _1,.4y2,2 1, C_ 1 9
29 a A LAEA PR vy o 1=12
Lemmas 5 and 6 and the discussion immediately after show that Rq P = Rq £
115 2’
for all £ € R , and we have explained why this implies M =M for
ql!\, qZ’C
all & € € . Therefore 9, =9, asa consequence of Lemma 8. For fixed 9y

(29) is a second-order differential equation for Yy o Both +y's have the

same Cauchy data, using Lemma 5 again, so they must be equal.
i~
[
Remark 4: One could use other inverse spectral theorems in place of Lemma 7,
with minor modifications of the argument. The one proved in [5] requires less

regularity for 4 > and it leads to a proof of Theorem 2 with ! € Cz([O,I]).

We believe that the regularity hypotheses on Y, are an artifact of the method

—ad
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of proof, and not intrinsic to the problem.

Remark 5: We may onclude that Yy 7o based on an (upparent) weaker
assumption than = . It suffices to know that
ll YZ
AY (4,0) = AY (¢,0) and

1 2

AY (Ol W)

]
-
<

(0,%)

for two specific pairs of boundary data (9,0) and (0,y) satisfving the

condition:

there exists an interval (a,b), a < b ,

such that representatives of 6 and ¢ ,

when restricted to (a,b), vanish at most

on a set of measure zero.

Indeed, with this assumption, it follows directly from the proof of Lemma 6

that AY F = AY £ for each & € R . An energy argument, similar in spirit
1") 2)

to that in [6]) (or that in the proof of Theorem 1) but applied to the equations
L} 1 2 O
(YiV ) - & Y,v=0,

with ¢ sufficiently large, now shows that yl(x) = y,(x) and yi(x) = y!(x)

at x 0,1. From the discussion following Lemma 6 it follows that Aq . = \q .
. ly‘.- 2’3

[}

and the rest of the proof of the fact that Y =Y

proceeds exactly as before.

L]

2

R
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7. Convergence of a reconstruction algorithm

The numerical reconstruction of a conductivity Yy involves its estima-
tion in some finite dimensional space, using partial information about the
boundary measurements. We shall formulate a simple algorithm of this type, and
prove its convergence as a consequence of the identifiability results in (6].

If the available data are the energies {QY(om)}:gl corresponding to
some known boundary values ¢l,¢2,..., and if y is to be approximated in a
finite dimensional subspace V of L(RQ) , then a natural approach would

N

seem to be

. P ..
find Yy € VN‘,{ﬁ : 0<,05,(§)} such that

P P L
is minimal .

max [Q (0m)-Qy(¢m)l/”¢m” -

1gmgN N

N N

For this to succeed, it is of course necessary that y be approximated well

by some element of V That is easily arranged, but it is not enough: since

N

the problem is ill-posed, we must somehow make sure that there is a minimal value

and that vy van not deviate wildlv from y . A natural wav to achieve this is

choose i within a fixed compact ser K (relative to a topology in which we

A

expect vonvergence). Thus modified, our method is to

(30) find Yy € VN N K such that

| ! '
max | Q (’°m)'QY(°m)|/"" !.

o is minimal .
1<mgN N

,3%

(] [l

Finding a K which ensures convergenc~, is not overly conservative,
and has a simple description is in genéral nontrivial, The method (30) could

be called semidiscrete, since the evaluation of QY (:m) still requires the
N
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solution of an elliptic boundary value problem. The compactness of K ensures

that the sequence {YN};=1 has a subsequence converging to some Y e K . If

the spaces V. , the set K , and the sequence {¢m}:=l are chosen properly

then y* will have the same boundary measurements as vy . If Yy 1is identifiable

within K by means of boundary measurements then v* = v and the method converres.
We give a concrete example, including the details of the convergence

proof just sketched, for y which may be extended holomorphically to a

(complex) ball

2 !
,
x.) = {z€€" : -x. <R}
BR(_O) iz l__oz

about some x. € & , with 22 B.(x.). In other words, we suppose that y has

-0 R'=0
a power series
y(x) = Z a (x-x.)" , X €0
— C!_'—O —
a
with
‘lJ.'wx = ( )
S R v a < ™ L T B X .
ap s ’ R 20
(In the last two expressions ~ ranges over all J-turles of nonnevative integers.)
Lo ) LYooy &
The functions - & ‘=1 are assumed to be dense in H(32) (L is a C
m =

A4omaint, and we choose

. vy = {p : p is a polynomial of degree ¢ dy-

o]
where idV}V-L is a sequence converging to ® as N * @ ., The compact set

K consists of those analvtic functions 7 on for which

v(x) ¢ 5 ¢ € omax ~(x)
X

Cifr—

j» 3
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and
(31) sup 1 Rlal]Da'(x Y| ¢ C sup R!a‘la |
al =t S a
a a
for some fixed C > 1 ,
It is easy to see that <y can be approximated well in VN N K . Indeed,
when N 1is large enough
Ty = a (x-x )% €v_nK
N la <d a — N
N
and this Gy Y in Lm(Q) as N =+ =« ., We know that
2 fl ; 1 2
(32) lQ (¢)-Q (&) | < Dlig=vi el
L () k5,30
whenever ¢ and Yy are uniformly bounded away from O and <« . Therefore
min  max [Q (6)-0 (40 |/i0 Mz o+ 0
;éV\IﬂK lemeN L
as N - = , and so the Yy satisfy
(33) max [Q (¢ )-Q (¢m)|/H¢ Hi 50 = O
lemeN YN Y m -2,
as N - =
3v the definition of K ,
_ ) ot
Yy = La, (xmxp)
a
(N) .
with a = 0 for {al > d,, and
% N
"] = < -L-“ .- I;";.';.:-ﬁ‘t.“ L_Q ":‘:'.A‘.:.-“J. ol :41. \.J-;:

-— e ey
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N
- sup Rlalfa(L)l < C sup Rla][a | .
a a
. Q’N o]
Therefore there is a subsequence Nk for which
(Nk)
a -+ b as k -« , for each a
o a
- and
(34) sup Rlal|b | ¢ C sup R|a||aal .
{ o @ o
3 It follows ‘that
* _ . N
Yy 7Y < Z ba(x XO)
k o
uniformly in every ball x : [5:;qi < R'* |, R' - R, ard consequently
(35) Yy - y* in L) .
i
k
=
From (33) and (35) we get that
Qy*(om) = QY(¢m) o=1,2,... , -
1
3
and thus |
E
(36) Q . =0 . )
\Y* - 1
¢ 1
. fes 15
- since 1 is dense in H<(3%) .
~ mm=1
e The 'imit % is in |, using (34), (35 and the fact that iy < K -73;
o “k
Trom 3k oand the identiabiltity of analvtic conductivities, proved ia [A], 4
2; it foliows that * = v | The preceding
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=]
argument shows not only that {YN}N-l has a convergent subsequence tendinyg

to y but also that any convergent subsequence of {YN} necessarily

N=1

tends to y . This implies that the entire sequence converges to vy .

ot

Remark 6: The case when y 1is merely analytic on & can be treated

similarly. Let H be a compact set such that
Q ¢ interior(H) , and

Y extends analytically to a

neighborhood of H .

The latter condition assures that
1 3 a
sup o Rﬁ lID y(z)l < ®

for some > 0 where the supremum is now over points x € K and integer
» P p X g

two-tuples o > 0 . If (31) is replaced by

I
sup :%'RﬁailDuC(§)| < C sup 5? R$Q|IDGY(§)|

in the definition of K (the supremum again being over x € H and a 2 0)

then the argument can proceed essentially as before.

Remark 7: A similar semidiscrete method can be formulated for the lavered
case. By Theorem 2, convergence can be assured bv choosing K so that four

derivatives of <+ remain uniformly bounded on = ,

Remark 8: For piecewise analytic y we know identifiability from Theorem 1, but it

is not so clear now to define K . 1If a cover relative to which K is piecewise
analvtic is known, then one can proceed as before bv controlling Yy separatelv
on each piece. If the cover is unknown, however, it seems difficult to find a
choice of K which assures convergence.
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